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ABSTRACT: This paper develops a fully-automated workflow for
constructing panels of tree canopy from high-resolution multispec-
tral imagery with limited near-infrared (NIR) training data. The
proposed workflow utilizes the tree-pixel detection algorithm de-
veloped by Yang, Wu, Praun, and Ma (2009) and Bosch (2020) on a
large set of U.S. urban areas but modifies it by creating automatic
ground-truth masks through various visual graphics techniques
that leverage modern high-resolution NIR data. By matching colors
across different imagery periods, the workflow predicts tree presence
in older images without NIR data, using the recent images with
NIR data. Using a subset of cities that represent the different U.S.
climate regions, I quantify the effectiveness of the workflow by
implementing the algorithm without pre-processing in the creation
of ground-truth masks, without equalizing colors across periods,
and using a universal model for all areas. The comparison shows
that my workflow is the option that leads to better results in terms
of accuracy, recall, and precision.
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1. Introduction

The distribution of urban trees shapes the environmental and social fabric of modern cities.
Their benefits span from providing aesthetic value to numerous ecological and health ad-
vantages, like reducing heat-island effects by providing shade and reducing storm-water
runoff, inducing energy-savings, sheltering from the wind, improving mental well-being and
reducing crime (Morales (1980); Livesley, McPherson, and Calfapietra (2016); McPherson,
van Doorn, and de Goede (2016); Reid, Clougherty, Shmool, and Kubzansky (2017); Shepley,
Sachs, Sadatsafavi, Fournier, and Peditto (2019); Jones (2021)). Studying and monitoring the
distribution of trees within a city is key to assessing and maximizing those benefits, as well
as promoting equitable access to natural amenities and addressing environmental injustices
related to the unequal provision of tree coverage (Schwarz, Fragkias, Boone, Zhou, McHale,
Grove, O’Neil-Dunne, McFadden, Buckley, Childers, Ogden, Pincetl, Pataki, Whitmer, and
Cadenasso, 2015). Authorities have typically tracked the urban canopy with the conduction of
manual tree inventories with the location, species, and condition of public trees. However, the
recent advances in multispectral imagery and machine learning can allow us to obtain similarly
precise data replacing the labor intensiveness of conducting manual tree inventories.

This study presents a new pipeline that utilizes high-resolution aerial imagery, visual
graphics techniques, and machine learning pixel-classification algorithms to automatize the
generation of urban tree coverage panel data. The workflow is capable of predicting the
presence of tree coverage at the pixel-level, even when there is limited data available to create
ground-truth masks for training areas. One of the main strengths of this method is its potential
for widespread application, given that multi-spectral aerial imagery is publicly available in
multiple periods and geographic locations. Moreover, this paper has implemented the proposed
workflow to a geographic scale that covers multiple urban areas of the United States in two time
periods, representing a much more extensive coverage than other similar proposed algorithms.

Implementing any machine-learning algorithm for tree detection requires having available
highly geographically precise training data. Typically, it is obtained from city inventories
with limited geographic coverage (Beery, Wu, Edwards, Pavetic, Majewski, Mukherjee, Chan,
Morgan, Rathod, and Huang, 2022); using training data annotated by hand with bounding-box
annotations (Wegner, Branson, Hall, Schindler, and Perona (2016); Weinstein, Marconi, Aubry-
Kientz, Vincent, Senyondo, and White (2020); Weinstein, Graves, Marconi, Singh, Zare, Stewart,
Bohlman, and White (2021)) or point annotations (i.e., Chen and Shang (2022)) or by-hand point
annotations combined with inventories as in Ventura, Honsberger, Gonsalves, Rice, Pawlak,
Love, Han, Nguyen, Sugano, Doremus, et al. (2022). The hand annotation process is not only
costly, but it can also lead to inaccuracies when the algorithms are designed for pixel-level
segmentation and not for object detection. The alternatives then involve using light detection
and ranging (LiDAR) point-cloud data, since it captures high-resolution ground-elevation
data, or near-infrared light, which captures vegetation photosynthesis. However, the former is
expensive and geographically limited, and the latter is only available at high-resolution and
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large geographic scales recently. This paper develops a way to use near-infrared for just one
period to predict the presence of trees at a pixel resolution for periods in which this data is
unavailable.

Although there is a growing body of literature implementing the most modern visual graphic
techniques and machine learning algorithms to detect the presence of trees and their coverage,
they focus less on the transferability of these algorithms across periods. One of the reasons is
the difficulty of homogenizing images. Also, the time perspective is less developed due to the
difficulties of obtaining ground truth data for multiple periods. This work fills in this gap by
developing a workflow that relies on the algorithm developed by Yang et al. (2009) and Bosch
(2020), and that predicts tree coverage in multiple periods with only one period of training data.
To do so, it exploits near-infrared (NIR) data to fully automatize the creation of ground-truth
masks just for one time period and use them for periods when NIR light is unavailable.

The main contribution of this paper is developing an approach to construct panels of tree
coverage with high-resolution aerial imagery for areas of interest with periods without NIR

data. To do so, the first step consists of equalizing the colors of the non-NIR images to match
the colors of the same geographic area for the period in which the NIR data is available. This
step is necessary as the Yang et al. (2009), and Bosch (2020) (YWPM&B henceforth) method is
based exclusively on colors. Hence, using a trained model to predict areas with very different
colors would hinder transferability. For the period without NIR data, once the training areas
have been established for the first period following YWPM&B methodology, the tree-pixels to
create the ground-truth masks are labeled using iterative thresholding on the images for the
same area of the period with near-infrared data. The YWPM&B algorithm is then trained using
these images and implemented to predict images in the other period (i.e., the one without NIR

data). For periods in which NIR data is available, the workflow simply automatizes the creation
of pixel-level accurate ground-truth masks.

In a similar vein as Ventura et al. (2022) and Beery et al. (2022), but unlike Weinstein,
Marconi, Bohlman, Zare, and White (2019), which focuses on large-scale tree detection in
natural forests, I implement the workflow in an extensive collection of urban areas across 36
different Metropolitan Statistical Areas in the United States. However, in contrast to Ventura
et al. (2022), this paper identifies urban tree cover (pixel-level detection) rather than detecting
individual trees (object detection). The detection of coverage matters because changes over
time in tree canopy entail changes both in the extensive and areal margin, which implies that
to approximate its evolution the employed algorithm needs to be able to detect new trees
but also increased leaf or crown area of trees already present, as it is positively associated
with the environmental benefits of trees (Pretzsch, Biber, Uhl, Dahlhausen, Rötzer, Caldentey,
Koike, van Con, Chavanne, Seifert, du Toit, Farnden, and Pauleit, 2015). While object detection
can accurately capture changes in the amount of trees, it is unlikely to detect other changes
in coverage that pixel-level detection can capture. Furthermore, after detecting pixel-level
canopy, stand-alone trees or groups of trees can be obtained with some simple GIS processes.
Moreover, although Ventura et al. (2022) emphasize the large scale of their analysis, this paper
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goes beyond their scope by considering multiple urban areas in two periods of time spread
across the United States and not a single state. Back of the envelope calculations imply that the
areas under consideration in this paper cover 0.1% of the U.S. area, and 7% of its urban area,
while the numbers for Ventura et al. (2022) are 0.0004% and 0.02% respectively1. Moreover,
rather than applying a model estimated from a specific geographic area, this paper provides
trained models for two periods in each study area. Unlike Beery et al. (2022), this workflow
does not require mapping tree census data to imagery for model training, which increases its
applicability to areas without tree census data. In addition, this research differs from Beery
et al. (2022)’s approach by focusing on detecting tree canopies rather than automated species
identification.

The development of deep and convolution neural networks has allowed the emergence
of the literature focused on tree delineation without depending on using expert-engineered
features. Although some recent test-training datasets have emerged using these methodologies,
the technical expertise required to manipulate these algorithms and the need for extensive
training data and computational resources limits their applicability (Weinstein et al., 2020). This
paper, instead, relies on YWPM&B’s detection algorithm that requires no fine-tuning beyond
providing accurate ground-truth masks and produces accurate results. Precisely, the automatic
generation of these ground-truth masks and their transferability across periods developed by
this workflow allows obtaining maps of tree coverage and statistics for geographic units over
time, without the need for specific expertise or computational resources.

To quantify the relevance of using the proposed workflow, this paper trains and predicts the
model under various scenarios in a subset of areas representing seven out of the nine climate
zones in the United States. To assess the individual relevance of each step of the pipeline,
the experiments involve removing these steps one at a time. Each experiment uses a 5% and
10% sample of tiles to guarantee representative results. The analysis of the confusion matrices
indicates that equalizing colors and fitting models for each area are crucial for obtaining accurate
predictions, although there is some heterogeneity across cities.

This paper contributes to the remote sensing literature by bridging the gap between image
processing and machine learning methods for tree detection. To achieve this, the proposed
workflow utilizes image processing techniques to generate ground-truth masks that train pixel-
level artificial intelligence algorithms2. While a range of vegetation indexes exist to establish
the feature selection, this paper combines the visible and non-visible channels of multi-spectral
imagery to compute the standard Normalized Difference Vegetation Index (NDVI) that can
separate tree/not-tree pixels. After some pre-processing to smooth the image, background,
and foreground pixels are defined by thresholding the NDVI histogram in each area. Strict
image-processing methods would perform this operation everywhere to classify pixels as a

1The area covered is computed as the number of tiles multiplied by the area of each tile, which in the case of this
paper is 5122 sq.m. and for Ventura et al. (2022), (256*60)2 sq. cm

2To see a recent survey on different remote-sensing methods for tree detection see Hanapi, Shukor, and Johari
(2019)
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Figure 1: Workflow

Aerial image Split in
tiles

Train-test
split

Equalize colors
to NIR period

Find train tiles
in NIR period

Ground-truth masks
in NIR period

Train YWPM&B

model
Predict in rest of areas

and train areas of non-NIR period

Notes: Figure describes the workflow for period where there is no near-infrared data available.

tree-not tree, thus being restricted by the availability of multi-spectral imagery with the needed
channels to compute the index. However, because the image segmentation methodologies
achieve highly accurate results (for instance, a 90% detection rate in Srestasathiern and Rakwatin
(2014)), this paper employs them to label the training areas, fit the YWPM&B model and predict
it in images that do not contain all the needed channels to perform image segmentation.

2. Methodology

The methodology used in this paper to construct panels of tree canopy consists of three distinct
elements. Firstly, it involves the equalization of colors across different periods. This step is
important for ensuring that the color variations in the images do not affect the accuracy of the
subsequent analysis. Secondly, ground-truth masks are created for the training area to provide
a reference for the machine learning algorithm. Finally, a pixel-classifier algorithm is estimated
using YWPM&B. While this algorithm provides a crucial component of the methodology, the
first two steps and their integration into an automated workflow are unique contributions of
this paper.

Figure 1 illustrates the workflow for situations without near-infrared (NIR) training data.
Appendix Figure 5.1.1 shows the aerial image of Manhattan as example of the images used. The
process starts by splitting these aerial red-green-blue (RGB) images into 512×512 pixel tiles. 1%
of the tiles are selected as training areas with YWPM&B’s proposed train-test split method. To
ensure the training data is representative, the tiles are split into clusters with k-means clusters
based on the tiles’ summary characteristics (i.e., statistical information of texture and colors).
As many clusters as training areas are created, and for each cluster, the cluster’s centroid tile is
added to the training set. Next, the colors of the tiles are matched to those of the tiles in the
period with NIR data, and the training areas are replaced with images from the same area in the
NIR period. Ground-truth masks are created for the training areas, and the YWPM&B classifier
is trained. Finally, the trained classifier is used to predict all areas, including the areas that were
set as training in the non-NIR period. The workflow in the NIR period is essentially the same,
but without the equalizing color and training tiles substitution steps.
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Figure 2: Histogram matching on the lightness channel

Notes: Figure illustrates the histogram matching process. The image on the left is the image whose histogram has to
be matched to the image on the middle. The third image is the matched one after implementing the histogram

matching, and the last one represents the histograms of the source and target images.

To ensure that images have consistent colors across different time periods, this paper employs
color equalization techniques. When dealing with images taken from a similar viewpoint and
with similar sensors, histogram matching is an effective way to standardize colors (Shapira,
Avidan, and Hel-Or, 2013). Image histograms represent the pixel intensity distributions, and
their manipulation serves various purposes, such as segmentation and contrast enhancement
(Nikolova, Wen, and Chan, 2013). Histogram matching involves mathematically transforming
the cumulative distribution function of the source variable to match that of the target variable. In
image processing, where pixel values are typically discrete and bounded, histogram matching
involves creating a lookup table for each value. Figure 2 exemplifies the process. However,
while histogram matching, and the rest of histogram manipulations, are straightforward for
gray-scale images with only one channel, the application for colored images is subject to certain
limitations since, unlike gray-scale images, colored images have multiple channels to match.

In general, it is unwise to match each of the color channels independently as the resulting
colors will be erroneous (Gonzalez and Woods, 2018), and in the case of images in the red-green-
blue (RGB) color space –as the ones this paper uses– the results will be unpredictable due to the
correlation between channels and the lack of perceptual uniformity (Grundland and Dodgson,
2005). Rather than using the computationally intensive joint-histogram equalization, this paper
transforms the images to the L*a*b* color space to match the histogram of each of these new
channels independently. The L*a*b* color space is a perceptually uniform color space (i.e.,
perceived difference between two colors is proportional to the model one) where the channels
represent perceptual lightness (L*) and the unique colors of human vision according to the
opponent color model (red-green in the a*, and blue-yellow in b*). Because of the perceptual
uniformity and opponent nature of the L*a*b* color space, their channels are less statistically
correlated and can be matched independently without resulting in erroneous colors3. Visual
inspection of the resulting matched images using different color spaces (i.e., HSV, LCH) also
showed that the results using L*a*b* outperformed the others. Thus, the strategy for color
equalization implies converting the images from RGB to L*a*b* color space, matching the

3Other papers have also found that the L*a*b*color space outperforms the rest for color matching as Grundland
and Dodgson (2005) and Sunkavalli, Johnson, Matusik, and Pfister (2010)
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Figure 3: L*a*b histogram color matching

Notes: Figure illustrates the result of the color matching. The left-most image is the source image that is matched to
the middle image. The right-most image is the resulting matched image.

Figure 4: L*a*b histogram color matching

Notes: Figure illustrates an extreme scenario in which there are extreme divergences between source and reference
images.

histograms of the L*a*b* channels independently, and reconverting them back to RGB to be
able to implement the rest of the algorithms. Figure 3 provides an example of the result of the
procedure.

The paper implements the technique in a localized way matching the histograms of the same
512x512 1m2 tile in the two time periods. This is needed because histogram matching requires
similar features so that the difference in histograms is attributable to changes in lighting and
coloring conditions and not a drastic difference in the object image composition. To see this
consider an extreme case, as shown in Figure 4 in which the reference image has a portion
with all black pixels, then the target L* CDF turns flat on zero –which corresponds to black– on
the percentage of black pixels (25% in this case). Then, once the source CDF is matched, the
25% source pixels in the lowest part of the lightness distribution would transform into black.
While this is an extreme case, similar coloring effects will happen when the histograms differ
substantially.
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Figure 5: NDVI

Notes: Figure depicts the NDVI of the example training area.

Creating ground-truth masks leverages the availability of high-resolution aerial imagery
containing the two spectral bands typically used in the remote sensing of vegetation: red (R)
and near-infrared (NIR) light, whose wavelengths lie just outside the range of human vision.
Alive foliage appears green to the human eye because the chlorophyll pigment absorbs most of
the visible wavelengths for photosynthesis while reflecting green radiation. In contrast, the
cell structure of leaves reflects a significant portion of the NIR radiation received back into
space. Hence, due to chlorophyll pigment, healthy vegetation will concentrate on the lower
values of the red band and seem dark, but in the NIR band, the leaf cell structure results in
high reflectance. Traditionally, this behavior is summarized via the normalized difference
vegetation index (NDVI): NIR−R

NIR+R , with values ranging from -1 to 1. While vegetation will always
have positive values, the higher the value, the greener, more alive, and denser the vegetation;
negative values are typically associated with water, and low values are typically associated with
areas of soil, rock, sand, and man-made structures. Moreover, because soil spectral reflectance
is not different in the R and NIR bands, the NDVI can be used to separate vegetation from the
background (Karnieli, Agam, Pinker, Anderson, Imhoff, Gutman, Panov, and Goldberg, 2010).
An example area with its NDVI can be seen in Figure 5.

As there is no universal value that can distinguish among different classes, since the NDVI
is affected by various factors such as soil type, brightness, crop type, and growth stage (Xue
and Su, 2017), this paper implements nested image thresholding to find an NDVI separating
value for each particular training tile. Thresholding is done using Otsu’s method (Otsu, 1979),
a widespread image segmentation technique that consists of finding the value that maximizes
between-class variances for the histograms. In the first round, thresholding allows to separate
the shadow from sunlit pixels and then, in the second round, to detect vegetation in sunlit
pixels, similarly to Otsu, Pla, Duane, Cardil, and Brotons (2019). As shadows are typically
found on the first valley of the NIR histogram (Adeline, Chen, Briottet, Pang, and Paparoditis,
2013), Otsu’s thresholding is applied on the NIR band smoothed with Gaussian blur on a 3-by-3

7



Figure 6: Creation of ground-truth masks

Notes: Figure illustrates the thresholding algorithm in the example training area. The first image is the training area;
the second image is the smoothed NDVI after having removed shadows; the third image represents the final
ground-truth masks where yellow pixels are the ones that are labeled as true pixels; the histogram shows the

threshold values for the smoothed NDVI image histogram.

window with a standard deviation of 5 to reduce noise. Then, keeping only the pixels that are
above the threshold, the NDVI is computed. After applying the same Gaussian blur filter to
the NDVI, Otsu’s method is implemented to segment the image into three categories rather
than two. The intuition for using three classes is that since most urban areas exhibit mixed
features with different NDVIs, it guarantees that the highest class will correspond to the densest,
greenest, and most alive vegetation. All pixels whose NDVI falls above the second threshold
are labeled as true tree pixels in the ground truth mask. The process is illustrated in Figure 6.

To assess how well this ground-truth masks map to actual trees, New York City provides
an ideal scenario as it has aerial images for 2015, the year in which the city also conducted
its third street tree census. Sampling the XY coordinates of the alive trees from the census
to the ground-truth masks of the training areas shows that approximately 40% of the census
trees fall in a tree-labeled pixel. As NDVI values are the basis for creating the ground-truth
tiles, understanding these discrepancies requires sampling the NDVI values at tree coordinates
and comparing them to the thresholds. Figure 7 depicts the relationship between thresholds
and NDVI sampled distribution at tree coordinates for the training areas. To summarize
the distribution of NDVI values for tree census locations of each tile, the Figure shows the
minimum, the maximum, and the mean NDVI and compares them to the two Otsu’s thresholds.
All points along the same horizontal line represent the values for the same training tile. The
missing trees would be the ones whose NDVI lies between the inventory minimum and Otsu’s
second threshold. The first thing to notice from this figure is that the minimum sampled NDVI
for census trees is (1) always negative, and (2) always below the first threshold. The situation
represents that the missing tree coordinates correspond, according to its NDVI, to mand-made
structures and, according to the segmentation, the lowest category. The implication is that
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Figure 7: Comparison of NDVI thresholds and tree sampled NDVI

Notes: Figure shows the location of the NDVI sampled distribution for tree XY coordinates of the city inventory and
the estimated thresholds for the training tiles of New York City. All points on the same horizontal line correspond to

the same tile.

the trees that are missing would never be seen using the NDVI. The potential reasons behind
this relate to the angle the image was taken from, which can imply the trees are covered with
buildings or the coordinates might not correspond to the crown centroid. Notice, however, that
for tiles with positive mean inventory NDVI, the second threshold tends to be similar and is
always below the maximum, implying it successfully captures the top of the distribution.

After creating the ground-truth masks, the YWPM&B pixel-classifier is trained. The classifier
is based on visual features that represent the most distinctive properties of trees. The features
represent colors in RGB and L*a*b color spaces, texture applying Gaussian derivative filters to
the L* channel and entropy, which tends to be higher in trees than man-made structures, on the
L* channel. Then, adaptive boosting is used to train a strong classifier based on weak classifiers
constructed from these features. Then the model is used to predict the presence of trees in each
pixel of the rest of images and the predictions are refined to avoid stand-alone tree pixels.

Assessment metrics

The performance of the workflow is assessed with three different standard metrics in machine
learning: accuracy, recall, and precision. Given a confusion matrix (M) with cells containing the
share of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
for an area of interest, Equations 1 to 3 define the measures:

Accuracy = tr(M) = TF + TN (1)

Recall =
TP

TP + FN
(2)
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Precision =
TP

TP + FP
(3)

The usefulness of the measures lies in the fact that they provide a quantitative assessment
of how well the algorithm is predicting. In particular, accuracy measures the proportion of
pixels correctly classified across the tree and not-tree categories. Recall, instead, quantifies the
model’s ability to label true tree pixels as such. Precision, finally, measures how many of the
tree-labeled pixels are real trees.

Since obtaining a confusion matrix for tiles requires observing the model predictions as well
as the ground truth of that location, evaluating the performance of the models is only feasible
in the period with NIR data when we can construct the true labels for pixels as described in
Section 2. Hence, after training and predicting the model for each urban area under study,
the performance metrics are computed using a 5% random sample of tiles for each study area.
When experimenting with the model in a subset of cities, the assessments samples a 5% and a
10% of tiles, to decrease the likelihood that outliers in prediction are determining the differences.

Data

Implementing the methodology described uses high-resolution aerial imagery in two time
periods from the National Agriculture Imagery Product (NAIP) conducted by the United States
Department of Agriculture. The program started in 2003 and has been re-conducted every three
years since 2009. Images are always taken during the agricultural growing sessions, ensuring
leaf-on conditions for trees, which allows for their detection from the sky.

While during the first rounds, images were natural color (red-green-blue) images, recent
periods also contain the near-infrared band. In general, images for both periods are at a 1m2

resolution, but for some states, in the second period, it increased to 0.6. In such cases, the image
with the highest resolution is resampled to match the resolution of the other. In total, the study
areas contain 51,414 512×512 tiles for each period, which would account for 0.1% of the US
area and a 7% of the urban US area. Table 1 shows the urban areas with the corresponding
number of tiles and the two years for which the algorithm has already been implemented.

Of the cities shown in Table 1, the tests of the algorithm are performed on a subset of
those, aiming to represent the different climate zones of the US, but being less computationally
intensive by using a smaller sample. The selected cities are the following: The Five Boroughs of
New York City (Northeast zone); Flint (Upper Midwest); Akron (Ohio Valley); Birmingham
(Southeast); New Orleans (South); Seattle (Northwest); San Francisco (West).

3. Results

This section presents the results of implementing the algorithm discussed in Section 2 on
the study areas. Besides, to evaluate the effectiveness of the proposed workflow, a series of
experiments are performed in which each of the workflow steps is modified to analyze its
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Table 1: Distribution of tiles per city

City Tiles City Tiles City Tiles

Akron, OH (2004-2015) 1,305 Columbus, OH (2004-2015) 1,024 Queens, NY (2006-2015) 1,972
Atlanta, GA (2007-2015) 1,557 Dayton, OH (2004-2015) 504 Richmond, VA (2003-2015) 360
Baltimore, MD (2005-2015) 1,064 Detroit, MI (2005-2014) 5,368 Rochester, NY(2006-2015) 775
Birmingham, AL (2006-2015) 874 Flint, MI (2005-2014) 936 San Francisco, CA (2005-2014) 550
Boston, MA (2003-2014) 1,085 Kansas, MO (2007-2015) 647 Seattle, WA (2006-2015) 1,263
Bronx, NY (2006-2015) 572 Los Angeles, CA (2005-2014) 12,536 Somerville, MA (2003-2014) 16
Brooklyn, NY (2006-2015) 1,094 Manhattan, NY (2006-2015) 646 St. Louis, MO (2007-2015) 2,560
Buffalo, NY (2006-2015) 511 Milwaukee,WI (2005-2015) 844 Staten Island, NY (2006-2015) 1,089
Cambridge, MA (2003-2014) 104 Nashville, TN (2006-2014) 442 Syracuse, NY (2006-2015) 462
Camden, NJ (2006-2015) 154 New Haven, CT (2006-2014) 420 Toledo, OH (2004-2015) 872
Chicago, IL (2007-2015) 3,448 New Orleans, LA (2007-2015) 650 Trenton, NJ (2006-2015) 165
Cleveland, OH (2004-2015) 4,034 Oakland, CA (2005-2014) 1,051 Westchester, NY (2006-2015) 460

Notes: This table shows the number of 512× 512 tiles per city and the two years for which the algorithm has been implemented.

impact on accuracy, recall, and precision. These experiments provide valuable insights into
the performance of the algorithm and help identify the most critical factors that contribute to
achieving accurate and reliable results.

Overall the algorithm successfully identifies and maps tree canopy cover in the study areas,
as Figure 8 shows. The figure displays the model prediction for a Manhattan area in the two
time periods showing that the algorithm captures changes over time in tree coverage for a
location. Accuracy, recall, and precision values were consistently high across all study areas,
indicating the robustness and reliability of the proposed workflow. Figure 9 shows the three
assessment metrics for the cities on which the model has been implemented, and Appendix
Table 5.1.1 shows the corresponding numerical values. On average, accuracy values were
consistently the highest, with an average of around 0.9, and a minimum of 0.8 in Birmingham.
This implies that, on average, approximately 90% of the pixels are classified as tree/not tree
correctly. Recall rates exhibit more variation: while for some cities the model predicts 80% of
true tree pixels to be tree pixels, for Oakland and LA, recall rates fall around 0.5 (i.e., half of the
truth tree pixels are not labeled correctly). This variation in recall rates may be attributed to
the tree cover in Oakland and LA being more diverse and complex, including areas of urban
tree forest, which hampers the model’s ability to identify tree pixels. However, the average
recall rate for the model is 0.77, implying that, on average, the model can correctly predict the
presence of trees. However, the precision rate, although having a similar average as recall,
exhibits less variation and is no lower than 0.6 (Rochester), implying that most tree-labeled
pixels correspond to actual trees.

In summary, the workflow successfully identifies tree canopy in the study areas with high
accuracy, recall, and precision. While recall rates exhibit more variation due to the complexity
of tree cover in some cities, the average recall rate is still high, and the precision rate indicates
that most tree-labeled pixels correspond to actual trees. Overall, the algorithm is robust and
reliable in capturing changes over time in tree coverage for a location.

11



Figure 8: Example of detected canopy in Manhattan in 2006 (left) and 2015 (right)

Detected Tree Detected Tree

Notes: Figure shows the predicted tree pixels (in white) for an area of Manhattan in two periods of time, 2006 (left)
and 2015 (right)

Figure 9: Assessment metrics of baseline model: accuracy (left), recall (right), precision (bottom)

Notes: Figure shows the accuracy, recall and precision rates estimated according to Equations 1-3 using the baseline
model describe in Section 2.
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Experimentation

To evaluate the effectiveness of the proposed algorithm for mapping tree canopy cover, several
experiments were conducted modifying the different steps described in Figure 1. These
experiments aimed to investigate the impact of the ground-truth map creation, the lack of
color equalization, and the usage of a universal model. This subsection presents the results of
the experiments and discusses their implications for improving the accuracy and robustness
of the algorithm. Given that the results may vary depending on the specific study area, the
experiments are performed in a subset of urban areas that ought to represent most of the
different climate zones of the US.

Modifying ground-truth mask creation

The first experiment involves the modification of the ground-truth mask creation. The proposed
algorithm generates label pixels in training data in a series of steps that aim at reducing noise
in the NDVI distribution for a tile so that Otsu’s thresholds can accurately capture the valleys
and picks in the histogram. To do so, it started removing shadowed pixels by eliminating those
for which the NIR reflectance was below the first threshold of the smoothed NIR band. Then,
it obtained the NDVI with the remaining sunlit pixels and smoothed it before applying the
multi-Otsu’s thresholding. Finally, every pixel whose NDVI was above the second threshold
obtained in this last step was labeled as a tree pixel.

The relevance of this procedure is evaluated with two different experiments. The first
experiment uses only the multi-Otsu thresholding on the NDVI to generate the ground-truth
masks. The meaning is that, for each training tile, all pixels whose NDVI falls above the
second threshold are classified as trees. The second one, however, compares the predictions
of using this simple methodology to the ground-truth data using all the pre-processing steps
(shadow removal and smoothing). Notice that these two experiments capture two differences in
performance: (1) in general, how well does YWPM&B procedure perform when using different
training data, and (2) how well does it work when training data does not fully align with the
ground truth data.

Table 3 shows the results of the two experiments. The marginal differences in accuracy be-
tween the experiment and full processing imply the algorithm can produce truthful predictions
when estimated with different training data. Comparing the first experiment to the original
one indicates that while full pre-processing is associated with the higher recall, the experiment
is associated with higher precision. The implication is that the proposed model is better at
capturing tree cases, although it may produce more false positives. The experiment, however,
tends to label more tree pixels as such but may predict more false negatives. The explanation is
that the complete model eliminates pixels with NIR in the bottom category, and pixels that pass
the first cut-off are, therefore, more likely to be labeled as trees reducing false negatives (i.e.,
trees not detected as trees). However, it may also increase the number of false positives (i.e.,
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Table 2: Experimentation: modifying ground-truth masks

Exp. 1: NDVI Threshold Exp. 2: NDVI threshold vs. full processing

City Accuracy Recall Precision Accuracy Recall Precision

Akron 0.87 0.85 0.82 0.85 0.89 0.70
Birmingham 0.87 0.80 0.82 0.81 0.92 0.63
Bronx 0.92 0.91 0.81 0.90 0.91 0.66
Brooklyn 0.94 0.81 0.85 0.93 0.82 0.68
Flint 0.89 0.85 0.87 0.84 0.95 0.65
Manhattan 0.95 0.81 0.88 0.95 0.83 0.78
New Orleans 0.92 0.89 0.87 0.89 0.95 0.69
Queens 0.94 0.82 0.87 0.93 0.88 0.72
San Francisco 0.91 0.46 0.70 0.94 0.52 0.69
Seattle 0.82 0.53 0.81 0.84 0.66 0.51
Staten Island 0.93 0.85 0.86 0.92 0.92 0.71
Westchester 0.88 0.87 0.80 0.84 0.92 0.63

Notes: Table displays the performance results of running the algorithm using only double thresholding on NDVI
(Exp. 1) and training the algorithm defining with only NDVI thresholding but comparing to ground-truth data

using all the full pre-processing (Exp 2.) on a 5% of tiles.

non-trees identified as trees) because some pixels with low NDVI values may still be classified
as trees due to the Gaussian blurs.

While differences between both algorithms tend to be minimal, they enlarge in certain cities
like San Francisco and Seattle, where recall rates would fall from 70% to around 50% with the
experimentation, which may be related to the particular layout of these areas. Comparing the
performance using a 10% sample of tiles, shown in Appendix Tables 5.1.2 and 5.1.3, indicates
similar differences, with the full-processing algorithm associated with higher recall and lower
precision. However, while the performance of the full processing is stable, recall rates of
the experimentation have high variability and fall to a minimum of 0.2 in San Francisco.
The implication is that the experiment is not as robust to data variation as the complete
pre-processing this paper implements to create the ground-truth masks.

The second experiment, which creates training data directly thresholding the NDVI, but
compares the prediction of this model to the creation of ground-truth masks with all the
processing steps, allows assessing how well YWPM&B model performs when trained with
the wrong data, meaning data that does not correspond 100% to the ground-truth masks.
Comparing the results with both the 5% and 10 % sample ( Appendix Table 5.1.3) shows that
the second experiment is associated with higher recall rates but lower precision than the correct
model. Behind this is the fact that training the model with direct thresholding leads to a model
that automatically labels more pixels as trees than it should -according to original ground-truth
masks- in this way, while the model reduces false negatives by classifying more pixels as trees,
which increases recall, it also increases the number of false positives, decreasing precision.
Thus the training data must represent the ground-truth reality to achieve models with good
performance.
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Table 3: Experimentation: not-equalizing colors

Using a 5% sample Using a 10% sample

City Accuracy Recall Precision Accuracy Recall Precision

Akron 0.79 0.79 0.64 0.79 0.79 0.63
Birmingham 0.78 0.93 0.60 0.82 0.92 0.65
Bronx 0.86 0.00 0.05 0.86 0.00 0.37
Brooklyn 0.90 0.00 - 0.92 0.00 0.00
Flint 0.85 0.56 0.63 0.84 0.60 0.64
Manhattan 0.88 0.00 - 0.87 0.00 0.97
New Orleans 0.88 0.50 0.82 0.90 0.56 0.84
Queens 0.85 0.00 0.05 0.87 0.00 0.68
San Francisco 0.96 0.54 0.84 0.94 0.48 0.72
Seattle 0.85 0.14 0.24 0.85 0.21 0.26
Staten Island 0.82 0.00 - 0.86 0.00 -
Westchester 0.74 0.00 0.07 0.74 0.00 0.08

Notes: Table displays the performance results of training the model with tiles from a given color but implementing
it in tiles whose colors have been equalized to other tiles’ histograms using a 5% and a 10% of tiles.

Not equalizing colors

The second experiment aims to evaluate the impact of color normalization techniques on the
transferability of models. The design is as follows: while the model is trained using the images
with colors of the period with NIR data, and then the performance is evaluated on tiles of the
city that have been color equalized to match the colors of the first period images with L*a*b
histogram matching. This experiment is, in this way, able to determine the extent to which
color normalization techniques are necessary for the transferability of the model.

Table 3 shows the performance metrics for the experiment using both a 5% and 10% sample
of tiles. According to the results, one of the findings is across-city heterogeneity. While the
relatively low magnitudes for recall and precision in cities outside New York are consistent with
relatively worse-performing models, the values indicate the models fail in New York: in these
areas, the model labels very few or no single pixels as trees. The implication is that the accuracy
value in those areas is simply the percentage of pixels that are not-tree pixels, recall rates are
zero, and precision values are extremely low or missing. Comparing the two samples the
situation experiments marginal changes, except for some of the boroughs of New York, where
precision rates explode while the accuracy and recalls remain substantially unchanged. The
explanation for these changes is that with a larger sample, the models label a negligible share of
true trees as a tree pixel, causing a substantial increase in the precision rate. Moreover, similar
accuracy and recall rate for New York with a larger sample size suggests that the observed
performance is not a result of biased sampling or localized poor-quality imagery.

Observing these two extreme situations implies there is a subset of cities, like New York,
for which color equalization is an imperative requisite for transferability, while for others it
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Table 4: Experimentation: using a universal model

Using a 5% sample Using a 10% sample

City Accuracy Recall Precision Accuracy Recall Precision

Akron 0.72 0.08 0.89 0.71 0.08 0.93
Birmingham 0.84 0.92 0.63 0.80 0.88 0.60
Bronx 0.91 0.72 0.70 0.92 0.74 0.73
Brooklyn 0.92 0.66 0.70 0.92 0.66 0.68
Flint 0.72 0.00 0.02 0.74 0.00 0.02
Manhattan 0.95 0.76 0.77 0.92 0.79 0.69
New Orleans 0.86 0.92 0.62 0.87 0.93 0.66
Queens 0.91 0.53 0.77 0.92 0.57 0.75
San Francisco 0.90 0.61 0.50 0.91 0.63 0.50
Seattle 0.91 0.58 0.79 0.90 0.51 0.82
Staten Island 0.92 0.78 0.69 0.93 0.73 0.76
Westchester 0.82 0.67 0.69 0.83 0.60 0.69

Notes: Table displays the performance results of training a universal model using 1% of all tiles and using it to
predict in each area, with a 5% and a 10% sample of tiles.

improves the predictions as the performance rates are always superior using the correct color
model. Despite implementing a consistent color equalization process across all experimental
areas, there were significant variations in their performance rates, indicating that the color
changes over time differed across the regions. Overall, the results suggest that incorporating
color equalization is a promising approach for improving the transferability of algorithms
across time.

Universal model

The last experiment evaluates the transferability of a universal model across different urban
areas. Its goal is to determine if a single model would accurately predict tree cover in diverse
geographic regions or if individual models are necessary for each area. In order to evaluate
this hypothesis, a universal model is trained using a 1% sample of tiles from all geographies,
following the k-means cluster train-test split of the YWPM&B model. The universal model
is then used to predict the presence of tree pixels in 5% and 10% of tiles from each area and
compared to their ground truth masks. By comparing the performance of the universal model
with that of individual models for each urban area, this experiment sheds light on the feasibility
of using a universal model for tree cover prediction across diverse geographic regions.

Results of the experiment with the two different samples are presented in Table 4. As with
the color experiments, using a universally trained model to predict tree canopy reveals two
distinct scenarios. In cities such as Akron and Flint, the model predicts an insignificantly low
proportion of true positive tree pixels, yielding recall rates that are nearly zero, and accuracy
rates that stem from labeling all pixels as non-tree. For the rest of the cities, the model generates
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different tree-not-tree predictions but with performance rates that are always worse than using
individual models for each of them. This phenomenon can be attributed to the heterogeneity of
the data across the different cities. When training individual models for each city, the model
can capture the unique characteristics of that particular area. However, a universally trained
model cannot account for the heterogeneity resulting in lower performance overall. In cases
like the present one, where there are high levels of heterogeneity across areas, the experiments
imply that: (1) a unique training sample will not be representative enough for certain areas,
where the model will be unable to generate tree predictions, and (2) even for the areas for which
it may be relatively representative it may not be representative enough to achieve predictions
that are comparable to independent models. Therefore, these findings highlight the importance
of considering the heterogeneity of areas when raining models for tree canopy prediction.

4. Application

This section describes an example application of the algorithm to estimate a panel of tree
canopy coverage. The main objective is to compare the output generated by the algorithm
with the panel acquired from the tree censuses. The comparison aims to demonstrate the
reliability of the algorithm, highlight its potential uses, provide guidance on its limitations and
offer insights into how to use the algorithm for effective and reliable urban canopy estimation.
The city of New York is a unique area for experimentation due to its tradition of conducting
street tree inventories every ten years since 1995, which allows for obtaining a comparison
panel constructed from street inventory data. Hence, the application presented in this section
compares this census data to the obtained by applying the workflow to NAIP imagery from
New York City in 2006 and 2015. However, it is worth noting that while predicted data capture
trees throughout the entire city similarly to Ventura et al. (2022), the census panel is limited
to street trees only. Hence, to increase the comparability of both sets of results, the analysis
removes all areas covered by parks owned by the City of New York.

The resulting estimates from the algorithm are at the pixel level, which has the advantage of
reflecting the area covered by trees but is not directly comparable to tree counts. This section
implements a simple approach to approximate tree counts from pixel data to provide additional
comparisons. The conversion starts by vectorizing the tree pixel data, which generates a single
square polygon for each tree pixel. The polygon data represents the same as the pixel data
in a different format, whose advantage is that it allows combining all pixels into a single
geometry object. This step reduces the complexity of the vector data by converting all pixels
to a unique multi-geometry polygon. The final step explodes the resulting multi-geometry,
which separates the polygon into individual geometries depending on adjacency. The last step
involves exploding the multi-geometry object, which dissects the polygon into as many distinct
geometries as different parts the polygon has. This explosion only separates non-touching
geometries, which implies that some polygons that represent individual trees but are adjacent
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may remain combined. Therefore, the vectorized tree counts area a lower bound to the number
of trees estimated with the algorithm.

After constructing the canopy data, the next step in the analysis is to aggregate the tree
canopy coverage estimates into consistent geographic areas that allow for comparisons within
the city and across time. As the unit of intervention of public policy and urban planning
are neighborhoods, the application starts by aggregating the data to the Census block 2010
definition. Census Blocks are the finest geographic subdivision of the Census, containing
between 200-500 housing units, and are bound by geographic or jurisdictional elements. In the
case of the Five Boroughs of New York, the average area of the blocks is 0.3 square kilometers.
One advantage of aggregating data to Census Blocks or other geographic Census subdivisions,
is the availability of Census information on demographic and socioeconomic characteristics, a
requisite for designing policies that prioritize equity and address environmental justice concerns
within the city4.

In practice, each block each year is characterized by three canopy levels: the count of tree
census and tree pixels that fall within the block, and the amount of vectorized trees that intersect
the block. Figure 10 displays the tree canopy statistics in Staten Island for 2005 and 2015, which
was selected as it highlights the discrepancies present even after eliminating New York City
parks areas: areas with no street trees according to the Census are actually areas with high
levels of canopy coverage in other types of green spaces not belonging to the City. In fact, while
with the Census the estimated total number of trees in Staten Island’s blocks was 97,506 in 2005,
it raised to 115,236 using the vectorized tree count. The discrepancies imply that traditional
tree census can undercount the number of trees and the growth rates, which in this case would
be 3% according to the Census but 16% with the detected vectorized ones.

Table 5.1.4 contains descriptive statistics for the 2005 and 2015 canopy levels in each Borough.
The table shows that the distribution of vectorized estimates is similar in terms of mean and
median with the Census counts. However, the algorithm consistently detects higher maximum
levels of trees for both years and exhibits higher standard deviations. The implication is that
while the distribution of street trees is less varied, the canopy coverage estimated with the
algorithm, which includes green spaces and privately owned trees, exhibits higher variability
and maximum levels. The discrepancy highlights the importance of considering both public
street trees, privately owned trees, and trees in green spaces to promote equality in urban tree
canopy coverage. The table also indicates that the algorithm, both with vectorized counts and
pixels counts, successfully captures the broad pattern of change between 2005 and 2015, which,
according to the street census, is an increase in foliage in the city streets. Appendix Figure 5.1.2
provides additional evidence by plotting the difference between the 2015 count of vectorized

4An alternative approach would be to aggregate over a constant grid which preserves variation within Census
units and exploits the high resolution of the aerial imagery. However, using any geographic unit can lead to some
limitations, related to size and population variation within Census units or the choice of cell size, as prediction
errors will magnify in smaller areas and larger units will erase the variation. The choice will depend on the research
question at hand.
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Figure 10: Block level tree canopy data

Notes: Figure shows the tree canopy levels at the Block level in Staten Island. First row represents that three
measures (Street Census data, Pixel counts, Vectorized tree counts) for 2005 and the second row, for 2015.
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Table 5: Areas with no trees

% 0 Trees Blocks Block groups Tracts

2015 Census 0.15 0.01 0.01
2015 Vectorized 0.14 0.02 0.007

Notes: Table shows the percentage of units that have zero trees in 2015 according to street census and the
vectorization, and separately for the different aggregation units.

trees and the Census. It shows that while differences tend to be small between the two counts,
the vectorized counts are higher in large block groups, which typically contain large green
spaces.

The next step of the analysis explores the sensitivity of the estimates to the area of the
geographic units of aggregation. This issue is relevant as estimation errors will magnify in
smaller units: labeling pixels incorrectly will lead to significant underestimations of coverage,
which will be larger the smaller the area. The approach to tackle this question compares the
estimates obtained through aggregation at the block level to those obtained at the block group
and census tract levels, corresponding to immediately larger areas than blocks within the
Census hierarchy. The comparison begins by comparing the number of neighborhoods with
zero trees, a significant concern when aggregating data in small units. Moreover, blocks with
no trees are particularly relevant for applications using growth rates, as such scenarios result
in undefined rates for neighborhoods with no trees in the initial period, introducing bias in
the estimation. Table 5 contains the percentage of units with no estimated trees according
to the 2015 Census and vectorization with the three different geographic areas. As expected,
the larger the aggregation areas, the lower the share of units with zero trees, according to the
census and the vectorization. Also, the percentages obtained with both data sources are very
similar. The similarities between the block group and tract estimates suggest those units have
appropriate sizes to reduce the biases from zero estimated trees. Finally, the correlation between
the three different canopy measures with each aggregation level is shown in 11. The results
show that correlations increase with the unit area. Particularly, vector and census counts have
a correlation of 0.8 in 2015, while this was 0.4 in blocks. The potential explanation for these
higher correlations is that in larger units, the errors produced by the algorithm are relatively less
important because the larger size of the units provides more opportunities to capture a higher
number of trees, which can help mitigate the effects of errors. As previously discussed, tree
pixels do not have a one-to-one mapping to Census counts, which explains the low correlations
between both measures with all the levels. All in all, the findings suggest that block groups and
tracts areas may be the optimal aggregation units, which would guide the grid construction to
have areas ranging between 0.06-0.1 sq. km, corresponding to the median size of block groups
and tracts.
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Figure 11: Correlation matrices

Figure A: Blocks Figure B: Block groups

Figure C: Tracts

Notes: Figure shows correlation measures for the tree measures of tree canopy, with the three definition of
aggregation areas.
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5. Conclusion

Green spaces mitigate the adverse climatic and environmental effects of urban life and enhance
the well-being of city dwellers. Understanding changes in tree coverage is also essential to
design policies that guarantee equality in access to green amenities and ensure sustainable
urban development. However, obtaining data on urban tree coverage over time is challenging,
as traditional methods such as street tree census are time-consuming, costly, and cannot
provide historical data. While recent machine-learning techniques offer promise, they require
extensive expertise and modern data. This paper presents an innovative approach to rapidly
and accurately detect tree data from aerial imagery for multiple time periods and in the presence
of limited training data, addressing the need for cities to obtain tree coverage data efficiently.

This paper presents a novel, fully automated workflow for generating tree canopy panels.
The proposed method builds upon the tree detection algorithm developed by Yang et al. (2009)
and Bosch (2020) (YWPM&B), which has the notable advantage of only requiring natural-colored
aerial images. To create ground-truth masks, the workflow leverages the reflectance of alive
vegetation on near-infrared (NIR) light and employs histogram thresholding techniques to label
pixels as trees or not trees. Although this multi-spectral data is only available in high-resolution
imagery for recent periods, this paper demonstrates that it can be used to train models for
earlier periods if the colors of images in both periods have been equalized. This paper also
describes the implementation of the algorithm using images from the National Agricultural
Imagery Product (NAIP) in two time periods for a set of urban areas in the United States,
representing 7% of its urban area.

To assess the relevance of using the proposed workflow, a series of experiments are
performed using urban areas that represent the different climatic zones of the U.S. The first
set of experiments focuses on the creation of the ground-truth mask. One of the considered
scenarios simplifies the creation of the masks by eliminating the image pre-processing steps.
The results show that the simplification is less robust to data variation and more likely to
introduce a higher number of false negatives. Also, training the YWPM&B with this data and
comparing it to the ground-truth data obtained with the full pre-processing, shows that the
simplification is associated with more false negatives. The last two experiments show that by
not equalizing colors and using universal models rather than city models the model fails to
predict tree presence in certain areas while doing worse than the complete workflow in other.
Overall, the experiments results demonstrate the effectiveness and robustness of the proposed
workflow in accurately detecting tree presence.

The final section of the paper highlights the advantages of the methodology by comparing it
with the traditional street census approach. Specifically, it compares the estimated tree canopy
coverage obtained using the proposed approach with the data from the 2005 and 2015 tree
censuses conducted by the City of New York. The results demonstrate that the algorithm’s
predictions are generally consistent with the census data. However, the study also reveals the
importance of including green coverage in other areas, such as private properties or other green
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spaces, to accurately capture the urban tree canopy’s evolution and changes, which cannot be
achieved with census data. The section also discusses the transformation of pixel-level data into
tree counts and the choice of the aggregating unit, highlighting that aggregating tree coverage
data to the Census block-group and tract-level data reduces estimation biases.

In summary, this paper presents a novel methodology for constructing panels of tree canopy
that have been demonstrated to be robust in estimation with high levels of accuracy, recall, and
precision. The proposed approach captures broad changes in tree canopy similar to street census
data but has the added advantage of providing a more comprehensive picture of urban tree
canopy. Additionally, this paper shows how to work with the generated data by transforming
pixel-level data to tree counts and selecting the appropriate aggregating unit. Future work will
implement this methodology across all Metropolitan Statistical Areas of the United States and
make the panel of tree canopy data available at block, block-group, and tract levels, as well as
generate tree coverage grids for the areas. This research, while being methodological, has the
potential of addressing multiple research questions related to the historical change in green
amenities within and across cities, sustainability of urban development and environmental
justice.
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Appendix

5.1 Additional evidence and results

Figure 5.1.1: Aerial image for part of NYC

Notes: Figure shows a zoomed-in part of the aerial image for NYC in 2015.
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Table 5.1.1: Performance - baseline model

City Accuracy Recall Precision

Akron 0.85 0.89 0.72
Atlanta 0.83 0.76 0.80
Baltimore 0.92 0.85 0.82
Birmingham 0.80 0.80 0.63
Boston 0.94 0.88 0.80
Cambridge 0.94 0.82 0.77
Camden 0.92 0.82 0.79
Cleveland 0.84 0.79 0.68
Columbus 0.90 0.83 0.83
Dayton 0.88 0.59 0.80
Detroit 0.90 0.75 0.80
East St Louis 0.88 0.81 0.77
Flint 0.88 0.79 0.76
Kansas 0.87 0.75 0.76
Milwaukee 0.92 0.85 0.83
Nashville 0.93 0.87 0.83
New Haven 0.93 0.75 0.89
New Orleans 0.92 0.83 0.82
Oakland 0.92 0.45 0.74
Richmond 0.92 0.87 0.76
San Francisco 0.93 0.70 0.69
Seattle 0.93 0.70 0.78
St Louis 0.88 0.72 0.75
Toledo 0.90 0.86 0.80
Trenton 0.91 0.79 0.83
Bronx 0.93 0.81 0.75
Brooklyn 0.95 0.76 0.81
Buffalo 0.92 0.67 0.78
Manhattan 0.94 0.88 0.78
Queens 0.93 0.72 0.83
Rochester 0.87 0.77 0.60
Staten Island 0.93 0.84 0.76
Syracuse 0.90 0.67 0.75
Westchester 0.88 0.75 0.76
Chicago 0.92 0.67 0.85
Los Angeles 0.91 0.52 0.83
Somerville 0.96 0.92 0.89

Notes: Table displays the performance results of running the algorithm using a 5% of tiles.
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Table 5.1.2: Performance, 10% sample

City Accuracy Recall Precision

Akron 0.86 0.83 0.76
Birmingham 0.84 0.78 0.68
Bronx 0.92 0.86 0.68
Brooklyn 0.95 0.70 0.79
Flint 0.89 0.78 0.81
Manhattan 0.93 0.85 0.73
New Orleans 0.93 0.83 0.83
Queens 0.94 0.74 0.81
San Francisco 0.93 0.61 0.67
Seattle 0.90 0.56 0.81
Staten Island 0.92 0.85 0.72
Westchester 0.89 0.78 0.78

Notes: Table displays the performance results of running the algorithm using a 10% of tiles in the areas used for
experimentation.

Table 5.1.3: Experimentation: modifying ground-truth masks 10% sample

Exp. 1: NDVI Threshold Exp. 2: NDVI threshold vs. full processing

City Accuracy Recall Precision Accuracy Recall Precision

Akron 0.70 0.29 0.96 0.82 0.91 0.66
Birmingham 0.73 0.59 0.63 0.84 0.86 0.66
Bronx 0.93 0.87 0.85 0.91 0.94 0.68
Brooklyn 0.94 0.78 0.85 0.93 0.82 0.71
Flint 0.80 0.51 0.88 0.86 0.95 0.66
Manhattan 0.96 0.85 0.89 0.94 0.84 0.74
New Orleans 0.82 0.41 0.90 0.91 0.95 0.69
Queens 0.94 0.77 0.89 0.92 0.88 0.71
San Francisco 0.85 0.18 0.54 0.94 0.52 0.66
Seattle 0.75 0.25 0.84 0.85 0.72 0.56
Staten Island 0.94 0.82 0.88 0.93 0.93 0.71
Westchester 0.89 0.84 0.85 0.82 0.94 0.61

Notes: Table displays the performance results of running the algorithm using only double thresholding on NDVI
(Exp. 1) and training the algorithm defining with only NDVI thresholding but comparing to ground-truth data

using all the full pre-processing (Exp 2.) on a 10% of tiles.
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Table 5.1.4: Descriptive statistics

2005 Census Vectorized 2005 Pixels 2005 2015 Census Vectorized 2015 Pixels 2015
Borough

Min. Bronx 0 0 0 0 0 0
Brooklyn 0 0 0 0 0 0
Manhattan 0 0 0 0 0 0
Queens 0 0 0 0 0 0
Staten Island 0 0 0 0 0 0

Mean Bronx 11 7 1,187 15 11 2,072
Brooklyn 14 11 949 17 18 1,904
Manhattan 13 5 339 17 9 1,014
Queens 16 13 1,409 16 18 2,273
Staten Island 20 23 4,221 20 27 6,360

Median Bronx 7 4 197 13 8 868
Brooklyn 11 6 178 16 15 983
Manhattan 8 2 32 15 6 428
Queens 13 10 527 15 15 1,378
Staten Island 14 15 876 16 21 2,239

Maximum Bronx 162 1,054 683,839 287 837 811,663
Brooklyn 330 2,911 1,017,809 201 1,841 1,275,645
Manhattan 202 211 60,442 150 232 65,045
Queens 196 1,570 408,700 175 1,340 563,189
Staten Island 292 1,349 647,521 288 1,242 902,966

Std. Dev. Bronx 13 18 10,000 14 17 12,007
Brooklyn 15 37 15,248 14 34 16,796
Manhattan 15 9 1,831 15 11 2,355
Queens 16 24 8,483 14 23 8,967
Staten Island 24 46 23,805 21 37 28,885

Notes: Table displays descriptive statistics of tree coverage, aggregated at the block level, in the city of New York.

Table 5.1.5: Descriptive statistics for area (sq.km) of blocks in NYC

No tree pixels in 2005 Rest of blocks

Count 2,102 26,535
Mean 0.0119 0.0200
Std.Dev. 0.0079 0.0443
Minimum 0.0004 0.0005
25% 0.0071 0.0115
50% 0.0113 0.0155
75% 0.0155 0.0196
Maximum 0.1694 1.9966

Notes: Table displays descriptive statistics for the area (in sq.km) of blocks in New York City, separately for areas
without any tree pixel in 2005 and the rest.
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Figure 5.1.2: Difference in vectorized counts and Census counts, 2015

Notes: Figure shows the difference in the block counts between vectorized trees and Census trees in 2015.

31


	1 Introduction
	2 Methodology
	3 Results
	4 Application
	5 Conclusion
	References
	5.1 Additional evidence and results


